on (σ, τ)-module extension banach algebras
Authors
abstract
let a be a banach algebra and x be a banach a-bimodule. in this paper, we dene a new product on a x and generalize the module extension banach algebras. we obtain characterizations of arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new banach algebra.
similar resources
On (σ, τ)-module extension Banach algebras
Let A be a Banach algebra and X be a Banach A-bimodule. In this paper, we define a new product on $Aoplus X$ and generalize the module extension Banach algebras. We obtain characterizations of Arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new Banach algebra.
full textOn module extension Banach algebras
Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule. Then ${mathcal{S}}=A oplus X$, the $l^1$-direct sum of $A$ and $X$ becomes a module extension Banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ In this paper, we investigate biflatness and biprojectivity for these Banach algebras. We also discuss on automatic continuity of derivations on ${mathcal{S...
full textModule-Amenability on Module Extension Banach Algebras
Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...
full texton module extension banach algebras
let $a$ be a banach algebra and $x$ be a banach $a$-bimodule. then ${mathcal{s}}=a oplus x$, the $l^1$-direct sum of $a$ and $x$ becomes a module extension banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ in this paper, we investigate biflatness and biprojectivity for these banach algebras. we also discuss on automatic continuity of derivations on ${mathcal{s...
full textmodule-amenability on module extension banach algebras
let a be a banach algebra and e be a banach a-bimodule then s = a e, the l1-direct sum of a and e becomes a module extension banach algebra when equipped with the algebras product (a; x):(a′; x′) = (aa′; a:x′ + x:a′). in this paper, we investigate △-amenability for these banach algebras and we show that for discrete inverse semigroup s with the set of idempotents es, the module extension bana...
full textCorrigendum to "On $(sigma, tau)$-module extension Banach algebras"
In this corrigendum, we give a correction of one result in reference [1].
full textMy Resources
Save resource for easier access later
Journal title:
journal of linear and topological algebra (jlta)جلد ۳، شماره ۰۴، صفحات ۱۸۵-۱۹۴
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023